Scenario 1: Detecting multiple objects in the scene Scenario 2: Accurately retaining detection and track ids
Scenario 3: Detecting objects in the reverse direction
Scenario 4: Detecting a virtual vehicle on point-cloud data
Scene: Pointpillar + Regnet Scene: Pointpillar (TensorRT)
Backbone | mAP (nuScenes) | FPS | Memory (GPU) |
---|---|---|---|
Pointpillars | 39.26 | 8.88 | 3.5 Gb |
Pointpillars (TensorRT) | ---- | 15.15 | 4.5 Gb |
Pointpillar + Regnet | 48.2 | 7.76 | 3.5 Gb |
- Create virtual environment
conda create --name rosdeploy python=3.8
conda activate rosdeploy
- Install pytorch conda install pytorch from https://pytorch.org/ according to cuda version or lower for eg.
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
- Clone this repository
git clone [email protected]:ksm26/ROS-based-3D-detection-Tracking.git
- Install steps
pip install -U openmim
mim install mmcv-full
mim install mmdet
mim install mmsegmentation
- Install mmdetection3d
cd mmdetection3d
pip install -e .
- Install mmdeploy
cd mmdeploy
pip install -e .
- Install tf and jsk tf tutorial Bounding box visualization ROS jsk_visualization jsk_recognition_msgs
sudo apt-get install ros-melodic-jsk-recognition-msgs
sudo apt-get install ros-melodic-jsk-rviz-plugins
sudo apt-get install ros-melodic-jsk-rqt-plugins
sudo apt-get install ros-melodic-jsk-visualization
- Install tensorrt
pip install nvidia-tensorrt
python3 -m pip install --upgrade tensorrt
Error with rospy.init_node(): An error with ros packages installation into conda environment. Run the above ros_python_environment.yml using:
pip install scikit-build
conda env update --file ros_python_environment.yml
import tf: Error
Import tf does not work with python 3 as it is compiled for python 2.
Solution: Recompile with python3 in catkin_workspace
To be able to work with python interpreter (pycharm,visual studio) add the compile path as below:
sys.path.append("~/Desktop/ROS-tracker/catkin_ws/src:/opt/ros/melodic/share")
Source catkin envrionment after tf installation and creation of new catkin workspace
source ~/catkin_ws/devel/setup.bash
Download the checkpoint for 3D-detection model-zoo. This repository evaluates the performance of Pointpillars and Regnet models pretrained on nuScences dataset.
Test by running a rosbag and subscribe to appropriate rostopics
rosbag play rosbag_name.bag
python3 mmdetection3d/demo/pcd_demo_class.py
Convert the checkpoint into ONNX file and than to tensorRT .engine file
python3 mmdeploy/tools/deploy.py
ONNX file can be visualized using NETRON.
This project is released under the Apache 2.0 license.
- MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
- MMDeploy: OpenMMLab model deployment framework.
- 3D-Multi-Object-Tracker: Tracking multiple objects in 3D scene.