Skip to content

Grayscale image colorization using a conditional DCGAN in Python and Pytorch

License

Notifications You must be signed in to change notification settings

hbenbel/Colorization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

 ██████╗ ██████╗ ██╗      ██████╗ ██████╗ ██╗███████╗███████╗
██╔════╝██╔═══██╗██║     ██╔═══██╗██╔══██╗██║╚══███╔╝██╔════╝
██║     ██║   ██║██║     ██║   ██║██████╔╝██║  ███╔╝ █████╗  
██║     ██║   ██║██║     ██║   ██║██╔══██╗██║ ███╔╝  ██╔══╝  
╚██████╗╚██████╔╝███████╗╚██████╔╝██║  ██║██║███████╗███████╗
 ╚═════╝ ╚═════╝ ╚══════╝ ╚═════╝ ╚═╝  ╚═╝╚═╝╚══════╝╚══════╝
                                                             

DESCRIPTION
    Grayscale image colorization using a conditional DCGAN

USAGE
    First make sure that you have every packages in the requirements.txt file.

    The input image resolution should be either 32x32 or 256x256.
    To train using DCGAN change the config/train.json file to put the correct
    parameters and launch the training using:
        python train.py --config config/train.json

    To test the trained model, change the config/colorize.json file to put the
    correct parameters and launch the inference using:
        python colorize.py --config config/colorize.json

REFERENCES
    Colorful Image Colorization (https://arxiv.org/abs/1603.08511)
    Image Colorization with Generative Adversarial Networks (https://arxiv.org/abs/1803.05400)

CONTRIBUTORS
    Hussem Ben Belgacem

Releases

No releases published

Packages

No packages published

Languages