-
Notifications
You must be signed in to change notification settings - Fork 457
/
eval_internlm_turbomind.py
55 lines (49 loc) · 2.04 KB
/
eval_internlm_turbomind.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from mmengine.config import read_base
from opencompass.models.turbomind import TurboMindModel
with read_base():
# choose a list of datasets
from opencompass.configs.datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
from opencompass.configs.datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from opencompass.configs.datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets
from opencompass.configs.datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets
from opencompass.configs.datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
from opencompass.configs.datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets
# and output the results in a choosen format
from opencompass.configs.summarizers.medium import summarizer
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
# # config for internlm-7b model
internlm_7b = dict(
type=TurboMindModel,
abbr='internlm-7b-turbomind',
path='internlm/internlm-7b',
engine_config=dict(session_len=2048,
max_batch_size=32,
rope_scaling_factor=1.0),
gen_config=dict(top_k=1,
top_p=0.8,
temperature=1.0,
max_new_tokens=100),
max_out_len=100,
max_seq_len=2048,
batch_size=32,
concurrency=32,
run_cfg=dict(num_gpus=1, num_procs=1),
)
# config for internlm-20b model
internlm_20b = dict(
type=TurboMindModel,
abbr='internlm-20b-turbomind',
path='internlm/internlm-20b',
engine_config=dict(session_len=2048,
max_batch_size=8,
rope_scaling_factor=1.0),
gen_config=dict(top_k=1, top_p=0.8,
temperature=1.0,
max_new_tokens=100),
max_out_len=100,
max_seq_len=2048,
batch_size=8,
concurrency=8,
run_cfg=dict(num_gpus=1, num_procs=1),
)
models = [internlm_20b]