In Vulkans, shaders are compiled to Spir-V, but the driver completes optimization during pipeline creation. Having specialization constants in a shader, is like having #defines that can be changed when pipeline creation is submitted.
In this example, we will add three specialization constants with all possible permutations.
- USE_DIFFUSE: to add or not the diffuse contribution
- USE_SPECULAR: to add or not the specular contribution
- TRACE_SHADOW: to trace or not a shadow ray
In the closest hit shader (raytrace.chit
), we will add the three constants. Note that we are using int
only because the tiny helper class later is made for int
values.
layout(constant_id = 0) const int USE_DIFFUSE = 1;
layout(constant_id = 1) const int USE_SPECULAR = 1;
layout(constant_id = 2) const int TRACE_SHADOW = 1;
And later in the code, we branch based on the values. The modification of the shader will look like this.
// Diffuse
vec3 diffuse = vec3(0);
if(USE_DIFFUSE == 1)
{
diffuse = computeDiffuse(mat, L, normal);
if(mat.textureId >= 0)
{
uint txtId = mat.textureId + scnDesc.i[gl_InstanceCustomIndexEXT].txtOffset;
vec2 texCoord = v0.texCoord * barycentrics.x + v1.texCoord * barycentrics.y
+ v2.texCoord * barycentrics.z;
diffuse *= texture(textureSamplers[nonuniformEXT(txtId)], texCoord).xyz;
}
}
vec3 specular = vec3(0);
float attenuation = 1;
// Tracing shadow ray only if the light is visible from the surface
if(dot(normal, L) > 0)
{
if(TRACE_SHADOW == 1)
{
float tMin = 0.001;
float tMax = lightDistance;
vec3 origin = gl_WorldRayOriginEXT + gl_WorldRayDirectionEXT * gl_HitTEXT;
vec3 rayDir = L;
uint flags = gl_RayFlagsTerminateOnFirstHitEXT | gl_RayFlagsOpaqueEXT
| gl_RayFlagsSkipClosestHitShaderEXT;
isShadowed = true;
traceRayEXT(topLevelAS, // acceleration structure
flags, // rayFlags
0xFF, // cullMask
0, // sbtRecordOffset
0, // sbtRecordStride
1, // missIndex
origin, // ray origin
tMin, // ray min range
rayDir, // ray direction
tMax, // ray max range
1 // payload (location = 1)
);
}
else
isShadowed = false;
if(isShadowed)
{
attenuation = 0.3;
}
else
{
// Specular
if(USE_SPECULAR == 1)
{
specular = computeSpecular(mat, gl_WorldRayDirectionEXT, L, normal);
}
}
}
Running the example will not change anything, since by default it will do everything as it usually does.
The specialization constants must be attached to their stages described by VkPipelineShaderStageCreateInfo
structs.
See specialization contants reference
In our example, we will have only integers for constant data. There are various ways to do this, but here is the helper class we will be using to add as many constant IDs and values as we want. We will add specialization constants by calling this class's add function with a constant ID and a value, or with a vector of pairs of IDs and values.
//////////////////////////////////////////////////////////////////////////
// Helper to generate specialization info
//
class Specialization
{
public:
void add(uint32_t constantID, int32_t value)
{
spec_values.push_back(value);
VkSpecializationMapEntry entry;
entry.constantID = constantID;
entry.size = sizeof(int32_t);
entry.offset = static_cast<uint32_t>(spec_entries.size() * sizeof(int32_t));
spec_entries.emplace_back(entry);
}
void add(const std::vector<std::pair<uint32_t, int32_t>>& const_values)
{
for(const auto& v : const_values)
add(v.first, v.second);
}
VkSpecializationInfo* getSpecialization()
{
spec_info.dataSize = static_cast<uint32_t>(spec_values.size() * sizeof(int32_t));
spec_info.pData = spec_values.data();
spec_info.mapEntryCount = static_cast<uint32_t>(spec_entries.size());
spec_info.pMapEntries = spec_entries.data();
return &spec_info;
}
private:
std::vector<int32_t> spec_values;
std::vector<VkSpecializationMapEntry> spec_entries;
VkSpecializationInfo spec_info;
};
In HelloVulkan::createRtPipeline()
, we will create 8 specialization of the closest hit shader.
So the number of stages, will be 11 instead of 4.
enum StageIndices
{
eRaygen,
eMiss,
eMiss2,
eClosestHit, // <---- 8 specialization of this one
eShaderGroupCount = 11
};
Then create a Specialization
for each of the 8 on/off permutations of the 3 constants.
// Specialization
std::vector<Specialization> specializations(8);
for(int i = 0; i < 8; i++)
{
int a = ((i >> 2) % 2) == 1;
int b = ((i >> 1) % 2) == 1;
int c = ((i >> 0) % 2) == 1;
specializations[i].add({{0, a}, {1, b}, {2, c}});
}
Now the shader group will be created 8 times, each with a different specialization.
// Hit Group - Closest Hit
// Create many variation of the closest hit
for(uint32_t s = 0; s < (uint32_t)specializations.size(); s++)
{
stage.module = nvvk::createShaderModule(m_device, nvh::loadFile("spv/raytrace.rchit.spv", true, defaultSearchPaths, true));
stage.stage = VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR;
stage.pSpecializationInfo = specializations[s].getSpecialization();
stages[eClosestHit + s] = stage;
}
Tip : We can avoid to create 8 shader modules, but we would have to properly deal with the deletion of them at the end of the function.
We will also modify the creation of the hit group to create as many HIT shader groups as we have specializations. This will give us the ability later to choose which 'specialization' we want to use.
// Hit Group - Closest Hit + AnyHit
// Creating many Hit groups, one for each specialization
for(uint32_t s = 0; s < (uint32_t)specializations.size(); s++)
{
group.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR;
group.generalShader = VK_SHADER_UNUSED_KHR;
group.closestHitShader = eClosestHit + s; // Using variation of the closest hit
m_rtShaderGroups.push_back(group);
}
Note, it is important that the data and structures are not created on the stack inside the loop, because we are passing the data address and specialization information, so all this would become invalid when the pipeline is created.
If you would run the sample, nothing would have changed. This is because each TLAS's hitGroupId
is set to 0
.
A quick test would be to change the value to 4
, corresponding to only using diffuse.
rayInst.hitGroupId = 4; // We will use the same hit group for all objects
Knowing the type of material each object is using, it would be possible to choose the appropriate specialization for each object.
In our example, we will allow to choose globally the specialization for all objects. To do this, we will add
a new entry to the push constants structure of PushConstantRay
.
At the end of the structures, add
int specialization;
and in the hello_vulkan.h
, initialize the member to 7 (all)
PushConstantRay m_pcRay{{}, {}, 0, 0, 7};
In raytrace.rgen
, we will use this new value to offset the hit group. Instead of always taking the hit group 0, it will
use the one we choose.
When we call trace, we will use the specialization value to change the SBT offset.
traceRayEXT(topLevelAS, // acceleration structure
rayFlags, // rayFlags
0xFF, // cullMask
pushC.specialization, // sbtRecordOffset
0, // sbtRecordStride
0, // missIndex
origin.xyz, // ray origin
tMin, // ray min range
direction.xyz, // ray direction
tMax, // ray max range
0 // payload (location = 0)
);
Now we only need UI to change interactively the value.
In main.cpp renderUI()
, add the following code.
// Specialization
ImGui::SliderInt("Specialization", &helloVk.m_pcRay.specialization, 0, 7);
int s = helloVk.m_pcRay.specialization;
int a = ((s >> 2) % 2) == 1;
int b = ((s >> 1) % 2) == 1;
int c = ((s >> 0) % 2) == 1;
ImGui::Checkbox("Use Diffuse", (bool*)&a);
ImGui::Checkbox("Use Specular", (bool*)&b);
ImGui::Checkbox("Trace shadow", (bool*)&c);
helloVk.m_pcRay.specialization = (a << 2) + (b << 1) + c;