We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
paddleServing部署时,启动http客户端,报错
/home/aistudio/PaddleClas/deploy/paddleserving/recognition {'err_no': 8, 'err_msg': "(data_id=0 log_id=0) [det|0] Failed to postprocess: 'scale_factor.lod'", 'key': [], 'value': [], 'tensors': []}
识别推理模型serving_server_conf.prototxt文件是: feed_var { name: "x" alias_name: "x" is_lod_tensor: false feed_type: 1 shape: 3 shape: 224 shape: 224 } fetch_var { name: "scale_factor" alias_name: "features" is_lod_tensor: false fetch_type: 1 shape: 512 }
通用检测模型.prototxt文件是: feed_var { name: "im_shape" alias_name: "im_shape" is_lod_tensor: false feed_type: 1 shape: 2 } feed_var { name: "image" alias_name: "image" is_lod_tensor: false feed_type: 1 shape: 3 shape: 416 shape: 416 } feed_var { name: "scale_factor" alias_name: "scale_factor" is_lod_tensor: false feed_type: 1 shape: 2 } fetch_var { name: "save_infer_model/scale_0.tmp_1" alias_name: "save_infer_model/scale_0.tmp_1" is_lod_tensor: true fetch_type: 1 shape: -1 } fetch_var { name: "save_infer_model/scale_1.tmp_1" alias_name: "save_infer_model/scale_1.tmp_1" is_lod_tensor: false fetch_type: 2 }
The text was updated successfully, but these errors were encountered:
config.yml #worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG ##当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num worker_num: 1
#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port http_port: 18080 rpc_port: 9993
dag: #op资源类型, True, 为线程模型;False,为进程模型 is_thread_op: False op: imagenet: #并发数,is_thread_op=True时,为线程并发;否则为进程并发 concurrency: 1
#当op配置没有server_endpoints时,从local_service_conf读取本地服务配置 local_service_conf: #uci模型路径 model_config: ResNet50_vd_serving #计算硬件类型: 空缺时由devices决定(CPU/GPU),0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu device_type: 1 #计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡 devices: "0" # "0,1" #client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测 client_type: local_predictor #Fetch结果列表,以client_config中fetch_var的alias_name为准 fetch_list: ["prediction"]
Sorry, something went wrong.
Message that will be displayed on users' first issue
pipeline.log中报错显示 Traceback (most recent call last): File "/home/aistudio/.data/webide/pip/lib/python3.7/site-packages/paddle_serving_server/pipeline/operator.py", line 1105, in _run_postprocess logid_dict.get(data_id)) File "recognition_web_service.py", line 94, in postprocess boxes = self.img_postprocess(fetch_dict, visualize=False) File "/home/aistudio/.data/webide/pip/lib/python3.7/site-packages/paddle_serving_app/reader/image_reader.py", line 427, in call self.clsid2catid) File "/home/aistudio/.data/webide/pip/lib/python3.7/site-packages/paddle_serving_app/reader/image_reader.py", line 344, in _get_bbox_result lod = [fetch_map[fetch_name + '.lod']] KeyError: 'scale_factor.lod' ERROR 2024-03-18 19:23:33,028 [dag.py:410] (data_id=0 log_id=0) Failed to predict: (data_id=0 log_id=0) [det|0] Failed to postprocess: 'scale_factor.lod'
No branches or pull requests
paddleServing部署时,启动http客户端,报错
/home/aistudio/PaddleClas/deploy/paddleserving/recognition {'err_no': 8, 'err_msg': "(data_id=0 log_id=0) [det|0] Failed to postprocess: 'scale_factor.lod'", 'key': [], 'value': [], 'tensors': []}
识别推理模型serving_server_conf.prototxt文件是:
feed_var {
name: "x"
alias_name: "x"
is_lod_tensor: false
feed_type: 1
shape: 3
shape: 224
shape: 224
}
fetch_var {
name: "scale_factor"
alias_name: "features"
is_lod_tensor: false
fetch_type: 1
shape: 512
}
通用检测模型.prototxt文件是:
feed_var {
name: "im_shape"
alias_name: "im_shape"
is_lod_tensor: false
feed_type: 1
shape: 2
}
feed_var {
name: "image"
alias_name: "image"
is_lod_tensor: false
feed_type: 1
shape: 3
shape: 416
shape: 416
}
feed_var {
name: "scale_factor"
alias_name: "scale_factor"
is_lod_tensor: false
feed_type: 1
shape: 2
}
fetch_var {
name: "save_infer_model/scale_0.tmp_1"
alias_name: "save_infer_model/scale_0.tmp_1"
is_lod_tensor: true
fetch_type: 1
shape: -1
}
fetch_var {
name: "save_infer_model/scale_1.tmp_1"
alias_name: "save_infer_model/scale_1.tmp_1"
is_lod_tensor: false
fetch_type: 2
}
The text was updated successfully, but these errors were encountered: