This repository has been archived by the owner on Dec 18, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
constants.py
414 lines (387 loc) · 14.1 KB
/
constants.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import importlib.resources as pkg_resources
import json
from enum import Enum
def _get_schema(path):
return json.loads(pkg_resources.read_text("schema", path))
# TODO remove 'experimental' before going live
BIGQUERY = {
"datasets": {
"summary_pages_all": "httparchive:experimental_summary_pages",
"summary_requests_all": "httparchive:experimental_summary_requests",
"pages_all": "httparchive:experimental_pages",
"technologies_all": "httparchive:experimental_technologies",
"lighthouse_all": "httparchive:experimental_lighthouse",
"requests_all": "httparchive:experimental_requests",
"response_bodies_all": "httparchive:experimental_response_bodies",
"parsed_css_all": "httparchive:experimental_parsed_css",
"summary_pages_home": "httparchive:summary_pages",
"summary_requests_home": "httparchive:summary_requests",
"pages_home": "httparchive:pages",
"technologies_home": "httparchive:technologies",
"lighthouse_home": "httparchive:lighthouse",
"requests_home": "httparchive:requests",
"response_bodies_home": "httparchive:response_bodies",
"all_pages": "httparchive:all.pages",
"all_requests": "httparchive:all.requests",
"parsed_css_home": "httparchive:experimental_parsed_css",
},
"schemas": {
"summary_pages": {"fields": _get_schema("summary_pages.json")},
"summary_requests": {"fields": _get_schema("summary_requests.json")},
"pages": {"fields": _get_schema("pages.json")},
"technologies": {"fields": _get_schema("technologies.json")},
"lighthouse": {"fields": _get_schema("lighthouse.json")},
"requests": {"fields": _get_schema("requests.json")},
"response_bodies": {"fields": _get_schema("response_bodies.json")},
"parsed_css": {"fields": _get_schema("parsed_css.json")},
"all_pages": {"fields": _get_schema("all_pages.json")},
"all_requests": {"fields": _get_schema("all_requests.json")},
},
# See BigQuery API JobConfigurationLoad doc for additional parameters
# https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#jobconfigurationload
"additional_bq_parameters": {
"all_pages": {
'timePartitioning': {'type': 'DAY', 'field': 'date', 'requirePartitionFilter': True},
'clustering': {'fields': ['client', 'is_root_page', 'rank']},
'maxBadRecords': 100,
},
"all_requests": {
'timePartitioning': {'type': 'DAY', 'field': 'date', 'requirePartitionFilter': True},
'clustering': {'fields': ['client', 'is_root_page', 'is_main_document', 'type']},
'maxBadRecords': 100,
},
},
}
# mapping of headers to DB fields
GH_REQ_HEADERS = {
"accept": "req_accept",
"accept-charset": "req_accept_charset",
"accept-encoding": "req_accept_encoding",
"accept-language": "req_accept_language",
"connection": "req_connection",
"host": "req_host",
"if-modified-since": "req_if_modified_since",
"if-none-match": "req_if_none_match",
"referer": "req_referer",
"user-agent": "req_user_agent",
}
GH_RESP_HEADERS = {
"accept-ranges": "resp_accept_ranges",
"age": "resp_age",
"cache-control": "resp_cache_control",
"connection": "resp_connection",
"content-encoding": "resp_content_encoding",
"content-language": "resp_content_language",
"content-length": "resp_content_length",
"content-location": "resp_content_location",
"content-type": "resp_content_type",
"date": "resp_date",
"etag": "resp_etag",
"expires": "resp_expires",
"keep-alive": "resp_keep_alive",
"last-modified": "resp_last_modified",
"location": "resp_location",
"pragma": "resp_pragma",
"server": "resp_server",
"transfer-encoding": "resp_transfer_encoding",
"vary": "resp_vary",
"via": "resp_via",
"x-powered-by": "resp_x_powered_by",
}
class MaxContentSize(Enum):
# BigQuery can handle rows up to 100 MB when using `WriteToBigQuery.Method.FILE_LOADS`
FILE_LOADS = 100 * 1000000
# BigQuery can handle rows up to 10 MB when using `WriteToBigQuery.Method.STREAMING_INSERTS`
STREAMING_INSERTS = 10 * 1000000
# limit response bodies to 20MB
RESPONSE_BODIES = 20 * 1000000
TECHNOLOGY_QUERY_ID_KEYS = {
"adoption": ["date", "technology", "geo", "rank"],
"lighthouse": ["date", "technology", "geo", "rank"],
"core_web_vitals": ["date", "technology", "geo", "rank"],
"page_weight": ["date", "technology", "geo", "rank"],
"technologies": ["client", "technology", "category"],
"categories": ["category"],
}
"""Mapping of query types to a list of fields that uniquely identify a row."""
# editorconfig-checker-disable
TECHNOLOGY_QUERIES = {
"adoption": """
CREATE TEMPORARY FUNCTION GET_ADOPTION(
records ARRAY<STRUCT<
client STRING,
origins INT64
>>
) RETURNS STRUCT<
desktop INT64,
mobile INT64
> LANGUAGE js AS '''
return Object.fromEntries(records.map(({{client, origins}}) => {{
return [client, origins];
}}));
''';
SELECT
STRING(DATE(date)) as date,
app AS technology,
rank,
geo,
GET_ADOPTION(ARRAY_AGG(STRUCT(
client,
origins
))) AS adoption
FROM
`httparchive.core_web_vitals.technologies`
WHERE date = '{date}'
GROUP BY date, app, rank, geo
""",
"lighthouse": """
CREATE TEMPORARY FUNCTION GET_LIGHTHOUSE(
records ARRAY<STRUCT<
client STRING,
median_lighthouse_score_accessibility NUMERIC,
median_lighthouse_score_best_practices NUMERIC,
median_lighthouse_score_performance NUMERIC,
median_lighthouse_score_pwa NUMERIC,
median_lighthouse_score_seo NUMERIC
>>
) RETURNS ARRAY<STRUCT<
name STRING,
desktop STRUCT<
median_score NUMERIC
>,
mobile STRUCT<
median_score NUMERIC
>
>> LANGUAGE js AS '''
const METRIC_MAP = {{
accessibility: 'median_lighthouse_score_accessibility',
best_practices: 'median_lighthouse_score_best_practices',
performance: 'median_lighthouse_score_performance',
pwa: 'median_lighthouse_score_pwa',
seo: 'median_lighthouse_score_seo',
}};
// Initialize the Lighthouse map.
const lighthouse = Object.fromEntries(Object.keys(METRIC_MAP).map(metricName => {{
return [metricName, {{name: metricName}}];
}}));
// Populate each client record.
records.forEach(record => {{
Object.entries(METRIC_MAP).forEach(([metricName, median_score]) => {{
lighthouse[metricName][record.client] = {{median_score: record[median_score]}};
}});
}});
return Object.values(lighthouse);
''';
SELECT
STRING(DATE(date)) as date,
app AS technology,
rank,
geo,
GET_LIGHTHOUSE(ARRAY_AGG(STRUCT(
client,
median_lighthouse_score_accessibility,
median_lighthouse_score_best_practices,
median_lighthouse_score_performance,
median_lighthouse_score_pwa,
median_lighthouse_score_seo
))) AS lighthouse
FROM
`httparchive.core_web_vitals.technologies`
WHERE date = '{date}'
GROUP BY date, app, rank, geo
""",
"core_web_vitals": """
CREATE TEMPORARY FUNCTION GET_VITALS(
records ARRAY<STRUCT<
client STRING,
origins_with_good_fid INT64,
origins_with_good_cls INT64,
origins_with_good_lcp INT64,
origins_with_good_fcp INT64,
origins_with_good_ttfb INT64,
origins_with_good_inp INT64,
origins_with_any_fid INT64,
origins_with_any_cls INT64,
origins_with_any_lcp INT64,
origins_with_any_fcp INT64,
origins_with_any_ttfb INT64,
origins_with_any_inp INT64,
origins_with_good_cwv INT64,
origins_eligible_for_cwv INT64
>>
) RETURNS ARRAY<STRUCT<
name STRING,
desktop STRUCT<
good_number INT64,
tested INT64
>,
mobile STRUCT<
good_number INT64,
tested INT64
>
>> LANGUAGE js AS '''
const METRIC_MAP = {{
overall: ['origins_with_good_cwv', 'origins_eligible_for_cwv'],
LCP: ['origins_with_good_lcp', 'origins_with_any_lcp'],
CLS: ['origins_with_good_cls', 'origins_with_any_cls'],
FID: ['origins_with_good_fid', 'origins_with_any_fid'],
FCP: ['origins_with_good_fcp', 'origins_with_any_fcp'],
TTFB: ['origins_with_good_ttfb', 'origins_with_any_ttfb'],
INP: ['origins_with_good_inp', 'origins_with_any_inp']
}};
// Initialize the vitals map.
const vitals = Object.fromEntries(Object.keys(METRIC_MAP).map(metricName => {{
return [metricName, {{name: metricName}}];
}}));
// Populate each client record.
records.forEach(record => {{
Object.entries(METRIC_MAP).forEach(([metricName, [good_number, tested]]) => {{
vitals[metricName][record.client] = {{good_number: record[good_number], tested: record[tested]}};
}});
}});
return Object.values(vitals);
''';
SELECT
STRING(DATE(date)) as date,
app AS technology,
rank,
geo,
GET_VITALS(ARRAY_AGG(STRUCT(
client,
origins_with_good_fid,
origins_with_good_cls,
origins_with_good_lcp,
origins_with_good_fcp,
origins_with_good_ttfb,
origins_with_good_inp,
origins_with_any_fid,
origins_with_any_cls,
origins_with_any_lcp,
origins_with_any_fcp,
origins_with_any_ttfb,
origins_with_any_inp,
origins_with_good_cwv,
origins_eligible_for_cwv
))) AS vitals
FROM
`httparchive.core_web_vitals.technologies`
WHERE date = '{date}'
GROUP BY date, app, rank, geo
""",
"technologies": """
SELECT
client,
app AS technology,
description,
category,
SPLIT(category, ",") AS category_obj,
NULL AS similar_technologies,
origins
FROM
`httparchive.core_web_vitals.technologies`
JOIN
`httparchive.core_web_vitals.technology_descriptions`
ON
app = technology
WHERE date = '{date}' AND geo = 'ALL' AND rank = 'ALL'
ORDER BY origins DESC
""",
"page_weight": """
CREATE TEMPORARY FUNCTION GET_PAGE_WEIGHT(
records ARRAY<STRUCT<
client STRING,
total INT64,
js INT64,
images INT64
>>
) RETURNS ARRAY<STRUCT<
name STRING,
mobile STRUCT<
median_bytes INT64
>,
desktop STRUCT<
median_bytes INT64
>
>> LANGUAGE js AS '''
const METRICS = ['total', 'js', 'images'];
// Initialize the page weight map.
const pageWeight = Object.fromEntries(METRICS.map(metricName => {{
return [metricName, {{name: metricName}}];
}}));
// Populate each client record.
records.forEach(record => {{
METRICS.forEach(metricName => {{
pageWeight[metricName][record.client] = {{median_bytes: record[metricName]}};
}});
}});
return Object.values(pageWeight);
''';
SELECT
STRING(DATE(date)) as date,
app AS technology,
rank,
geo,
GET_PAGE_WEIGHT(ARRAY_AGG(STRUCT(
client,
median_bytes_total,
median_bytes_js,
median_bytes_image
))) AS pageWeight
FROM
`httparchive.core_web_vitals.technologies`
WHERE date = '{date}'
GROUP BY date, app, rank, geo
""",
"categories": """
WITH categories AS (
SELECT
category,
COUNT(DISTINCT root_page) AS origins
FROM
`httparchive.all.pages`,
UNNEST(technologies) AS t,
UNNEST(t.categories) AS category
WHERE
date = '{date}' AND
client = 'mobile'
GROUP BY
category
),
technologies AS (
SELECT
category,
technology,
COUNT(DISTINCT root_page) AS origins
FROM
`httparchive.all.pages`,
UNNEST(technologies) AS t,
UNNEST(t.categories) AS category
WHERE
date = '{date}' AND
client = 'mobile'
GROUP BY
category,
technology
)
SELECT
category,
categories.origins,
ARRAY_AGG(technology ORDER BY technologies.origins DESC) AS technologies
FROM
categories
JOIN
technologies
USING
(category)
GROUP BY
category,
categories.origins
ORDER BY
categories.origins DESC
"""
}
"""Mapping of query types to BigQuery SQL queries.
The queries are formatted with the `date` parameter.
Queries containing javascript UDFs require additional curly braces to escape the braces in the UDF.
"""
# editorconfig-checker-enable