forked from microsoft/CSWin-Transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
upernet_cswin_tiny.py
37 lines (33 loc) · 1.22 KB
/
upernet_cswin_tiny.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
_base_ = [
'../_base_/models/upernet_cswin.py', '../_base_/datasets/ade20k.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
]
model = dict(
backbone=dict(
type='CSWin',
embed_dim=64,
depth=[1,2,21,1],
num_heads=[2,4,8,16],
split_size=[1,2,7,7],
drop_path_rate=0.3,
use_chk=False,
),
decode_head=dict(
in_channels=[64,128,256,512],
num_classes=150
),
auxiliary_head=dict(
in_channels=256,
num_classes=150
))
# AdamW optimizer, no weight decay for position embedding & layer norm in backbone
optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01,
paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.),
'relative_position_bias_table': dict(decay_mult=0.),
'norm': dict(decay_mult=0.)}))
lr_config = dict(_delete_=True, policy='poly',
warmup='linear',
warmup_iters=1500,
warmup_ratio=1e-6,
power=1.0, min_lr=0.0, by_epoch=False)
data=dict(samples_per_gpu=2)